
Fermi National Accelerator Laboratory 
FERMILAB-Pub-81/45-THY 
April 1981 

TiiE. POTEXIAL M3EL OF COLORED QZAPXS: 

SUCCESS FOR SIXGLE-H4DROS STATES, 

FAILURE FOR W&ROY-UDROS IKTEF,:C?IOSS 

0. I?. Greenberg* 
Center for Theore:ical Physics 

Depart~~eat of Physics and Astronony 
University of Maryland 

College Park, Maryland 20742 

and 

liarry J. Lipkin 
Argonne National Laboratory, Argonne, Illinois 63435 

Ferci K:ational Accelerator Laboratory, Batavia, Illinois 63510 
and h'eizrrann 1ns:itute of Science, Rebox-ot, Israel 

April, 1981 

The success of the additive potential node1 of colored quarks for 

the masses, decay rates, and other properties of single mesons and 

baryons does not imply that this model can yield~the observed meson- 

nucleon and nucleon-nuclem interactions. We give a cmprehensive 

discussion of this issue. In agreement with previous authors, we conclude 

that, on the contrary, this node1 predicts inverse-power color-annlog 

van der Waals potentials between separated hadrons which are in substantial 

contradiction with experimental data. We also discuss pathologies of 

non-abelian confining potentials, and show that the Haniltonian is 

unbounded below for an arbitrary number of quarks and antiquarks in a 

definite color state for all color states, except the singlet, triplet, 

and antitriplet. 
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I. II:TROX’CTIc)X 

Very likely quantum chronodynacics (QCD), the local gauge theory 

of the interaction of colored quarks with colored gluons, should fonr 

she basis of a proper description of nucleons and mesons, as veil as 

the basis for the derivation of the meson-nucleon and nucleon-nucleon 

interactions. It is attractive to atten?t the stiplest use of QCD by 

abstracting from it an additive two-body potential node1 in wS;ch the 

confining potential which binds quarks into nucleons and quarks and 

antiquarks into mesons is represented by a potential of the forx 

HI = - I Fi’Fj V(lxi-“j() , 
i<j 

(a) where the eight Fi ‘s are the SU(3)color generators for the ith quark 

or antiquark. 
1 However, as emphasized in (11, it is important to note 

that, although the F’F color structure in (1) follows fron one-gluon 

exchange in QCD, it is not clear that QCD tiplies that the confining 

potential, which does not come from one-gluon exchange alone, has this 

color structure. 

Ilodels in which hadrons are made of constituent quarks interacting 

via two-body forces were introduced in the earl’; days of the quark model. 

These models provided a nmber of successfu! relations between hadron 

masses by usir.g effective matrix elements as free paraceters to describe 

the unknown quark forces [2-6). At this level there was no understanding 

1. For quarks (antiquarks) F (a) is 1 h(Q) 
2 

(-I A(~)T) 
2 - We abbreviate 

Z F(a)F(n)by F .F 
ai j 1 j’ 

-l- 
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of the saturation of these forces at the quark-antiquark and three-quark 

systfL-25, or of the relation between quark-antiquark forces in mesons and 

quark-quark forces in baryons. The introduction of the color degree of 

freedm solved the statistics problem [2,7,81 and partially explained’ 

saturation [7,8,9]. An interaction of the forz (1) us introduced by 

Kambu who obtained a hadron mass formula which had the saturation property 

for color-singlet states and pushed non-singlet states to high mass. 

However, Kazbu did not consider the spatial dependence of the potectial, 

which introduces qualitatively different effects. 

A model using an interaction of the fom (1) with a general spati& 

dependence was shown to give the desired relation between strong quark- 

quark and quark-antiquark forces and to give very much weaker forces 

between color singlet hadrons [lo]. Exotic bound multiquark states 

were shomvto exist in models with siiarply-cut-off short-range potentials, 

such as a sqiare well, but not to sist for reasonably snooth potentials, 

such as Yukava or power law potentials. Long range van der I:aals forces 

were not considered, since the concept of confinemnt had not yet been 

introduced. It was natural at that time to assume a YuIava potential 

wtth a long range cutoff, since no zero-mass gluons had been 

observed. However, the explicit results [lo] for the two-quark-two-antiquark 

system hold for potentials with arbitrary spatial dependence, and are used 

below to calculate va der Gals forces for confining potentials. 

Confining potentials which become infinite at large distances cause 

serious difficulty in multiquark systems, because the potential is not 

positive definite and can give negative infinite energies for systems of 

widely separated particles. In particular, h’anbu’s results do not hold 
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for states vhich are not color singlets or triplets because the 

Ha=.iltonian is unbounded fron below in such states. 

The success of the additive potential model of colored quarks for 

the Easses, decay rates, and other properties of single mesons and . 

baryons does not ix?ly that this model can yield the observed meson- 

nucleon ana nucleon-nucleon interactions. 2 Indeed, the validity of this 

model for the description of the forces has been challenged, because this 

model leads to spurious long-range Interactions between separated 

hadrons [1,10,13-16,21,22] which contradict experimental data. However. 

the literature contains conflicting results for the power behavior of 

the long-range interactions: some authors give an a 2a-4 potential 

between hadrons separated by a distance a if the confining potential 

goes as r” between quarks 1151, and other authors give a a-4 [1,10,14,16-181. 

Ue believe the latter result is correct. In addition, the negative conclusion 

about the validity of the model for the interhadron forces has itself been 

questioned [23 1. Thus the situation remains somewhat confused. 

The purpose of this article is to give a comprehensive discussion of 

the problem of unphysical long-range forces in potential models, and 

derive a number of rigorous results based on the use of the variational 

principle. In agreement with previous authors. we conclude that this 

2. Without trying to give an exhaustive set of references, we cite some 

articles which deal with color-analog van der Waals forces or with 

attempts to derive the nucleon-nucleon interaction from the quark 

model [l,lO-221. We emphasize that we use the phrase color van der Waals ‘. 

forces to refer to residual irverse-power interactions between separated 

hadrons, not the exponentially-decreasing strong interactions which are, 

presumably, also a residual effect of the color interactions among 

quarks and gluons. 
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model predicts inverse-power color-analog van der I;aals potentials 

between separated hadrons which are in contradiction with present 

experi?ental data. 

II. PECULIAR PROPERTIES OF CO:;FIKI::G POTE!;TIALS 

We first note that the interaction (1) has very peculiar properties. 

If it is attractive and confining, i.e. V(r) 2 0 and V(r) + -, r + m, in 

the color-singlet quark-antiquark state and in the color-antitriplet 

quark-quark state, then it is repulsive and anticonfining, i.e. <HI> 

is unbounded belov, in the color-octet quark-antiquark and color-sextet 

quark-quark states. 

For a quark and antiquark in the state $, which is either a color- 

singlet or a color-octet state, we use the CasFrir operator3 and 

2 c(l) = (F~+F~) = Fl 2 
+ 2Fl’F2 + F2 

2 = C(3) + 2F1’F2 + C(3*) (2) 

to conclude that 

2Fl’F2 = C(e) - 2C(3), (3) 

so that (for localized static quarks -- we comment later that introducing 

3. ine seconu-order Casimir operator of W(3) is given by 

c = F.F = 1 p1 2-f,f2+f22) + fl 

for the irreducible representation whose Young tableau has fl boxes 

in the first row and f2 In the second. C is the same for a representation’ 

and its complex conjugate. We give C for representations of small 

dimension; C(1) = 0, C(3) * 4/3, C(6) = 10/3, C(8) = 3, and C(10) = 6. 
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wave packets and kinetic energy does not change our conclusions) 

<l(q<) [H il(q<)> = G V(r -1 2 0 
I 3 99 

(4) 

and 

<8(q<)\~,/8(q~)> = - IVCr -) + - m, 
6 9q 

For three quarks in the color-singlet (baryon) state, a sixilar argument 

using the fact that each qq state is in a color antitripler shcv<s that 

<l(qqq) ]Hlll(qqq)> - $V(r,,) + V(r23) + V(r31)] >, 0. (6) 

This interaction is unbounded both above and below; 
4. m a color-octet three- 

quark (baryon) state, since 

<E(qqq) /HIIS( = !j V(r) * =, r -c -, (7) 

’ while for a state with r12 = r23 = r31 = rr 

<8(qqq) jHI(8(qqd> z - $ V(a) + - -, a -c -, (8) 

for a state with the quarks ata andz2 in a 3* state, where r12 is finite 

and fixed. and a - 1% - $5+z2’ I. For three quarks in a color-decuplet 

state, 

~lO(qqq)lH,llO(qqq)> - - i[V(r12) + V(r23) + V(r31)1, (3) 

since each qq pair is in a color sextet, and thus <HIa is negative semi- 

definite and unbounded below in this case. 

__-_________--_------ 

4. The instability of the color-octet three-quark states was discussed in 

Ref. [24,25]. 



tiov we consider the general case of an arbitrary nmber of quarks 

and antiquarks in a given color representation r, labeled by a Young 

tableau vith fl boxes in the first row and f2 boxes in the second row. 

Ne will show that for each r except r = 1, 3, and 3" we can choose a 

sequence of wave functions for which the energy is unbounded below. 

If fl 5 f2+1, seaarare a subsystm I (for exazple, a quark) in a color- 

triplet state by a large distance 2 from the remaining particles in 

subsystem II. This latter subsystem can be chosen to be in the represen- 

tation with Young tableau (fl-l.f2). Then 

CT !Ii ’ Ii=’ I - a l (?il-2-i2)VCa) + - =, a - =, 
(Li 

unless (fl,f2) = (1,O); i.e., unless r is a color triplet. If fl = f2, 

separate a subsystez I' (for exaxple, an antiquark) in a color-antitriplet 

%ate by a large distance 2 from the remaining particles in subsystez II'. 

This latter subsystem can be chosen to be in the representation with Young 

tableau (fl-l,f2-1). Then 

<rlH+> = - $(fl+f*-2N(a) + - =, a + -, (11) 

unless (fl,f2) = (0.0) or (1,l); i.e., unless r is a coIor singlet or a 

color antitriplet. 

Inclusion of kinetic energy and the constraints of the Pauli principle 

do not change the above conclusions. Both effects can be taken into account 

by using properly antisyrmetrizsd wave functions with the subsystem which is 

separated by the large distance g in, for example, a Gaussian wave packet. 

The kinetic energy remains constant, and the exchange terns decrease with 
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Gaussian rapidity as 5 -+ m. Thus HI and H are unbounded below in all 

color sectors except the singlet, triplet, and antitriplet. 

Even in the color-singlet sector of physical interest, unphysical 

states of large negative energy can occur for potentials which increase 

too rapidly at large distances. Consider a color-singlet syste-, with 2n 

quarks and 2n antiquarks, for the general color group SU(X). Assme that 

the antiquarks are all in the neighborhood of the origin, and in the 

totally symmetric color state. Assume that n of the quarks are in the - 

neighborhood of -a on the x-axis, and that the other 2 quarks are in the 

neighborhhod of +a on the x-axis. with both sets of 1 quarks separately in 

the n-particle symmetric color state. The potential energy of this 

configuration is 

V = Fn(-a)*F2n(0) + F2;(0)*Fn(a) + Fn(-a)*Fn(a) . (12) 

Standard formulas 1261 give C2 03 (ii) = x1(X-1)(*+:;)/::. Using (Fn+F2;)* =C,(')(E), 

and (F,+F*)~ - C2 (x)(2n) , we find 

V = kn(N-1)[2on-2(2n+~)]a'/ll (13) 

for a confining potential kro. This potential is unbounded below for 

o > 2 + Ln[l+(N/2n)J/Ln 2 + 2, o. + m, h' fFxed. (14) 

(As usual in such arguments, the particles at the three locations can be 

placed in fixed wavefunctions with finite interparticle separations to 

avoid getting large kinetic energy.) 

For smaller values of ca, states with unbounded negative energy probably 

do not occur. This can be shown rigorously for the harnsnic oscillator 
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potential, 0. - 2, where V Is positive sezi-definite for color-singlet states 

cith any number of quarks and antiquarks, since for this case 1111, 

HI 
- k;: [da)]* - 1 

0 - 
[I F 

a ii (0)~i2,F(o)l+) , - 

K;:,ere I = rifi(o), [A,B]+ = a + Bk, and Q(" - z~zc,F~('). The stated 

recllt follcws frm the fact that F (a) annihilates color-singlet states. 

Sixilar results hold for the abelian case [11,21,22]. For a neutral 

syste= (r+=+ H is unbounded below for (1 > 2, as is shorn by the exan>le 

of two quarks and two antiquarks, with the quarks across one diagonal of a 

square of side a and the antiquarks across the other diagonal. Then 

V - k[4an-2(&)"] -+ -, a + Q, for CL > 2 . (16) 

T'ne bomdary case of the harmonic oscillator is also pathologlcal, since 

the suz of all the two-body pstential term satisfies an algebraic identity, 

so that 

V - k[ X (x 
i.j 

&Zj12 - r (lyj12 + IyL-~j/2)1 
i<j 

= ktZ&+zj Y2, 
i j 

(17) 

,~ere the -xi(Li) are quark (antiquark) coordinates for N quarks and N antiquarks. 

The Schrb'dinger equation with the potential (17). which is exactly 

solvable, does not have a spectrum corresponding to N mesons [ll]. For N 

quark-antiquark mesons. the 6N degrees of freedom consist of N 3-dimensional 

degrees of freedom with discrete spectra corresponding to internal energies 

(one for each meson), N-l 3-dimensional translational degrees of freedom of 

relative motion of the mesons, and one >dimensional degree of freedom of 

translation of the whole system. Neglecting the kinetic energies, the ground 

state energy of the set of N mesons grows as N. For the system with the 
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potential (17), there is only one 3-dimensional degree of freedom whose Spectrum 

is a discrete, internal energy, 6N-6 continuous internal degrees of freedom. 

and one 3-dimensional degree of freedom of trarslation of the whole system. 

Neglecting the energy associated with the continuous degrees of freedom, the 

ground state energy of the discrete internal degree of freedom grows as N 
I.12 

. 

Further pathologies in both ahelian and non-abelian models are given in 121,221. 

Although potentials with o =4 have recently been suggested in connection 

vith QCD sum rules [27], confining potentials used in particle physics 

usually do not increase faster than the harmonic oscillator, and unphysical 

stites with large negative energy do not occur. However this discussion 



shows the delicate nature of the cancellations between confining and 

anticonfining forces which are necessary to avoid this difficulty. 

Results for haZIon interactions which are very sensitive to the details 

of this cancellation can be questioned. In particular, extreme care 

must be taken to avoid unphysical effects in approxtiation methods 

which do not rigorously restrict all allowed wave functions to the color- 

singlet sector. Variational methods, for example, can obtain a spurious 

lowering of the energy by adding tiny amounts of non-singlet wave functions 

with infinite negative energy. 

One exanple of this difficulty is in the Hartree-Fock approxination 

for a many-quark system, in which each quark is assumed to move in the 

average field of the others. The Hartree-Fock wave function is not a pure 

color singlet; the color of the odd quark must he correlated in a complicated 

manner with the colors of the other quarks in order to produce a color-singlet 

stare. Sinilarlp in the treatment of large systeo.6 as infinite quark ICittel, 

by analogy with infinite nuclear matter, it is not 5ufficier.t for the 

local color density to be a singlet only on the average. Any fluctuations 

in color density at different points must be correlated rigorously in order 

to give a pure singlet state for the infinite system. Othervise tiny 

adnixtures of nonsinglet states with high negative energies can introduce 

spurious effects. 

III. COLOR VAN DER WALS FORCES 

Another manifestation of these unphysical long-range interactions 

occurs in the generation of long-range van der Waals interactions between 

hadrons. The interaction (1) has a vanishing expectation value between 

two separated color-singlet hadrons; however, this comes about because 
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the attractive and repulsive interactions between pairs in the txo 

separated hadrons exactly cancel for singlet states. Because of this 

cancellation, small errors relative to the confining potential can lead 

to large errors relative to the van der Waals potentials which we discuss 

belor;. The state of two separated color-singlet hadrons is not an eigen- 

function of the interaction (11, which has mtrix elements connecting this 

state with states in which both hadrons are color octets coupled to an 

overall color singlet. It imediately follows fror, the variational princi- 

ple that the energy of a state of two separated color-singlet hadrons can be 

lowered by adnixing a small amount of the separated color-octet state, 

since the only contribution to the energy which is linear in the admixed 

arn;litude comes from the off-diagonal matrix elements of HI and the phase 

can be adjusted to be negative. When HI is treatedin second-order pertur- 

bation theory, this gives the standard type of van der k’aals interaction 

which results from mutual polarization of the two separated objects and is 

attractive and decreases like a power of the distance. Because the polarizz- 

tion exists in color space as well as configuration space and the potential 

is confining, the power law is different fron the conventional non-confining 

abelian case. Modified second-order perturbation theory for the energy of 

two hadrons separated by a large distance z gives 

E (a).[~*V(a)<r*>l*/V(a) ? 9 
(18) 

L 

where cr*> is the mean square radius of the individual hadron and a2 >> <r*,. 

The expression (18) is just the ratio of the square of the interaction 

matrix element to the energy denominator. The interactio? is expanded in 

powers of rla and the first nonvanishing term comes from the quadratic 

tern. An additional power of V appears in the energy denoninator because 



the attractive and repulsive confining potentials no longer cancel when 

the individual hadrons are not color singlets, and this term dominates the 

energy denoninator at large distances. For the case of a power law potential, 

V(r) pro. 

2 2 E2(a) =<r > vkd/a4 - a . cl-4 
(19) 

For the particular case of the Quigg-Rosner logarithmic potential, 

v = log(r/ro) 

E 
2 

(a) = <r2,2a-4/lo&::,) = l/a4 loc.(a/ro) . (20-J 

We now demonstrate the validity of the result (18) in a ncmber 

of specific cases. We should like to go beyond perturbation theory and use- 

the variational principle just to verify that the peculiarities of confineren 

do not destroy the validity of the perturbation expansion. Because the 

realistic case of two three-quark baryons vith three colors and the full 

antiqmetrization required by the Pauli principle is coz?licated, we 

consider two sin?lif ied cases: 

1. Two quark-antiquark mesons with three colors but vith different 

flavors for the quark and antiquark pairs so that antisy-metrization is 

not necessary. 

2. Two two-quark baryons in a model with two colors, spin and flavor 

supynessed, and the full perzutation symmetry reqr;ired by the Pauli 

principle. 

In both cases the qualitative results of (lb) are obtained, thus 

confirming the conclusion that the additive tvo-body confining model 

possesses long-range Interactions which are in contradiction with experiment 

and can be used neither to calculate nucleon-nucleon forces nor the bulk 

propetties of quark matter. The physical reason for this difficulty is 

clearly indicated by noting that the long-range interactions between hadrons 
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must cotze from multigluon exchange, since single-glum exchange between 

quarks does not give confinement. There is no obvious reason why Eulti- 

gluon exchange over large Distances shouId be paraeterized as a two-body 

interaction between quarks, even though this par&Teterization agrees vith 

experinent for the short-distance interactions responsible for the static 

properties of hadrons. There are retardation effects, knovn both in the 

abelian and non-abelian cases, which reduce the effective van der Waals 

interaction [1,28,?9]. In the non-abelian case there are, in addition, 

color oscillations which must be correlated between two non-singlet 

hadrons which are in an overall color-singlet state. For two color- 

octet hadrons in a color-singlet state, each individual hadron has color 

quantum numbers which oscillate about the eight states of the octet at a 

frequency given by the energy denominator of eq. (1s). and these 

oscillations must be correlated between the two hadrons in order to 

have an overall color singlet. 

This model clearly must break down when the period of the color 

oscillations becomes short in comparison with the time required for a 

gluon to traverse the distance between the two hadrons. This occurs 

when 

ut = a V(a)/fic " 1, (21) 

where w : V(a)/K is the frequency of color oscillations and t = a/c is 

the time required for a gluon to travel between the two hadrons. tiote 

that the color correlations introduced by this model are not Einstein- 

Podolsky-Rosen correlations initially introduced into a system which is 

later separated. Here we begin with two separated color-stiglet States 

which are completely uncorrelated at very large distances. The interaction 
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(1) creates color polarizations, correlations, and oscillations at inter- 

mediate distances satisfying the condition (21) when the two hadrons are 

brought together. These effects are clearly unphysical and result fron 

the use of an instantaneocs "action at a distance” potential which intro- 

duces unphysical correlations between events separated by space-like 

intervals. 

A correct description of long-range forces between quarks mcst also 

take nulti?article channels into account. Even in the sb?lest case of 

charmonium, the single-channel potential picture breaks down above charm 

threshold and the coupling to open decay channels seriously affects the 

spectroscopy 1301. The infinitely risin& confining potential has neither 

real theoretical nor phenonenological justification. The separation. of 

non-singlet quark clusters does not require infinite energy for large 

distances. The act of separation polarizes the vacum, creates quark- 

antiquark pairs, and eventually produces free hadrons. If it is possible 

at all to treat interhadron forces with a fixed nmber of quarks and anti- 

quarks, the interquark potential should develop an imaginary part at large 

.distances, rather than remaining real and becoming infinite. 

We now consider the two cases in detail 

1. Two quark-antiquark mesons in SLJ(3)color. 

For two quarks and two antiquarks interacting with a non-abelfen 

color-exchange interaction, the van der Gaals interaction has been cal- 

culated using the sane approach of modified second order perturbation 

theory as for the abelian case. However. the intermediate state in the 

perturbation treatment for the force between two separated clusters 

involves a polarization of each cluster in color space as well as in 
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configuration space. This arises because an interaction having a color 

dependence Fi'Fj acting on quarks i and j in two separated color-singlet 

clusters changes each cluster to an octet in S'J(3)col,r (or to the adjoint 

representa:ion of SK(n) for the general case of S'Z(n)color). The energy 

for producing this color-excited state thus appears in the energy denoninator. 

This additional energy term comes from a Lern in the irteraction which 

vanishes for color-singlet clusters but does notvanish for non-singlet 

clusters and gives a contribution equal to the two-body potential. Thx s 

for a power-law potential which goes as r', the abelian result that the 

van der h'aals force goes as a 23-4 is changed to a a-4 . m modified second 

order perturbation theory, because the energy denominator introduces an 

addition21 factor of a'. 

The sane result is obtained in a static treatment u?Ach neglects 

kinetic energies and diagonalizes the potential exactly. For the case 

of color-singlet states of two quarks and two antiqxarks the potential 

is a 2x2 matrix in color space which has been diagonalized for the case 

of SU(3)color to give the eigenvalues [lo,171 

U’ = (7/16)(uo+uE) + (l/S)uq + (3/16) [E(u,-u,)* +("a+u,-:~~)~l~'~, (22a) 

where 

” 
a = y3 + u24; UE, = U14 + u23; uq = U12 + y4 , 

, 
and Il. 

lj 
is the interaction between particles i and j; particles 1 and 2 

(:Zb) 

are quarks and particles 3 and 4 are antiquarks. 

To study the van der k'aals problem, we consider the potential in the 

configuration where quark-antiquark pairs (13) and (24) are separated by 

a distance 2 which is large compared to the size of each cluster. we 
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eqznd the potentials ~~2, ~23, ul4 and "34 arowd ~~2+~34 =2~. The zero 

order values of u 
6 

and uq for this case are ue = u = 2u(a). 
9 

Thus uB-uq 

is higher order, and the potential can be ex?~!nde? in pours of u --u 
6 9 

to give 

(U6--U I2 
V' = " - 9(u -; ) a 

6 a 
+ o(u,-cq)3 . (23) 

The first term is just the binding energy of the .two clusters. The 

second term is the van der Gaels in:eraction between the two clusters. 

Taking the expectation value of t,his term with the wave function chosen 

to give the color-spatial correlations to ointiize the potenti?. energy 

gives the result 

d2u 2 
12($ $7 + (~)r=alcr132>2 

<U'> = Z" > - ==a 
162[u(a)-u(r13)1 , LI (24) 

where we have kept terns up to order r132,and evaluated the expectation 

value by assuning <r13>2 = ~~4, and assur.in& isotrqic distributions in 

the wave functions for r13 and r24. u(r) denotes the spatial dependence 

of U... Thus we can write 
13 

V vdk'= - 162[u(a)-~(r~~)l 
, (25) 

uhre u vdW denotes the van der Waals force given by the second term of (24). 

For a power Ia-< patenti u = kr', c > 0, 

U - -[ka2(a2-2a+3)a"-4*<r132>2]/162 . (26) 
vdW 

For a logaritbaic potential u = V. log(r/ro), 
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u -4 
vdW = Voa <rl32'2/54 logwr13) . 

Xe can include the contribution from the kinetic energy by usin& the 

virial theorem. I;e assume that the kinetic energy is due entirely to the 

relative motion within the two clusters, and neglect the kinetic energy 

of the motion of the cluster as a whole. This corresponds to the degrees 

of freedo- denoted by ~1~ and ~~4. The virial theore? then gives the 

expectation value of the kinetic energy as 

<T> = dC' + r24 dr24 5= 2<r 

(27) 

.(2S) 

where we have used the symmetry between the two clusters. 

Since the virial theorem is derived from the variational principle by 

minixizing the energy with respect to scale changes, the expression (28) 

holds for any approximate wave function where the cluster size is adjusted 

to minicize the energy by scale transfomations. Note that there is a 

small change in cluster size produced by the van der Vaals force (25). 

The contribution of this force gives a lower energy if the size of the 

cluster, represented by 'r13'> is increased. If the cluster size is set 

by minfmizing the energy of the clusters themselves, it is shifted slightly 

by the action of the van der Waals force. This then also gives a gain in 

kinetic energy. It is just this gain in kinetic energy which is automatically 

included by the use of the virial theorem. Substitution of (25) into (38) 

gives 

CT> = (l/2) <I du/dr> - 2 UvdW . (29) 

WC thus find that the total energy of the system is given by 

E = <H> = E 0 - 3 "vdl.l ' (30) 
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where E o is the total energy, kinetic plus potential, of the two clusters 

when the van der Waals force is neglected. Thus the effect of the 

van der h’aals force is enhanced by the kinetic energy contribution, but 

has the sane power behavior. 

2. Two baryons in SL!(2)color. 

To make our discussion as simple as possible, we consider a model in 

which the color group is Xl(?), so that two quarks in an antislmetric 

color state correspond to a baryon. For SU(2)color, the three Pauli 

matrices replace the eight X’s in (1). We also suppress the spin and 

flavor degrees of freedom of the quarks, and assune the quarks are 

nonrelativistic. Since we are interested in the residual interaction 

between two color-singlet baryons in our SC(Z) model, we consider a four- 

quark state whose color representation belongs to the four-box square 

Young tableau (2,2). We construct two orthogonal color isospin tensors 

which correspond to four quarks in a color singlet: 

*UllJ’iV3U4 = 2-l.3-1/2 (Cb3”l El?4u2 _ Eu2u3 ,Wl) 9 (31a) 

and 

B’1;.2”3u4 D f1 (E”?“’ tL4h2 + clii23 Eb-“l- 2culu2 Cu4b3). 

These tensors transform under the sjmetric group S4 according to the 

square Young tableau; this representation is two dimensional. Ke satisfy 

the Pauli principle by requiring the wavefunctions Fl and F, in the 

representation of the four-particle system to have the appropriate 

permutation symmetry under permutations of the coordinates 5 throughz4, 

(?lb) 

. 



-19- 

F~lu2u3~4(, 
,l'x2':3*54) = Auiu2u3u4 Fl(x1,x2,x3,x4) + -b - "I 

J$JlU2~3h f (* 
2 ,l'z2':3',x4) ' 

The wavefunction for two quarks in a color sin&let (i.e. an W(2) 

"baryon") has the form 

F(1)liI’2(3,x2) E ~'1'2 F(1)(/2), F(l) symetric; 

(3lc) 

(32) 

where F(l) satisfies the Schrbdinger equation 

F(')(x x ) = EF(l)(x 
-.l'-2 4’3) * (33) 

Two quarks in a color triplet have the wavefunction 

~(~)~1~2(3~,~~) = nu1p2~(3)~1,52), n sqmetric and F (3) antisymetric; (34) 

where F(3) satisfies the Schrudinger equation 

I-& (2 FC3)(x e1,z2) = EF (3)(x x 1 cl’-2 - (35) 
1 

+vZ) -; 
-2 Vl2l 

The spectrun of Eq. (35) extends to minus infinity; thus two quarks in a 

color-triplet state form an unstable system and the quarks repel each 

other and go into infinity. The Schradinger equation for the four-quark 

color-singlet system expressed as a matrFx equation for the wavefunctions 

F1 and F2 is 

!,i&I+k 1'; $1: [j-' I:\ * (36) . 
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vhere 

J=V 
13 + '23 + "14 + "24 ' 

K = 1’12 + v34 , 

L=V 
13 + lFz4 - V14 - vz3 * 

and Vij - Ixi-xj(' . 

We find the dependence of the energy of two baryons CT: :he dista:ce 

of separation a using a variational calculation of an aTproximate Eorn- 

(37a) 

(37b) 

(37c) 

Oppenheimer Hamiltonian in which we neglect the translatioxsl kinetic 

energy of the taryons? 7;~. make this explicit, we introduce co-ordinates 

r; r &-I(; 4 
1 ";I: $t' 2 

-1 (;;3+L-~l-@, z12 - ~1-~2, and '3L = z3-z4 * 

The Born-Oppenheimer Haziltonian iS 

K L' 
. 
H- - 1 (0' 

Cl -=12 
+ V2 ) II + k 

+a TT 

'r34 L K - 
i 26 2 ) 

(3E) 

vhereL13 = -2 + 2 -l(, -12~.34)* =-a+2 224 5 
-1 

(&-‘&’ 
-1 

Z14 = -2 + 2 
-1 

(:'12+z34). and ,rz3 - -," - 2 (z12+z34). 

It is convenient to \-rite the functions F1 and F2 in terns of sums 

of products of wavefunctions for two particle systens. The nest general 

form of the functions Fl and F2 in terms of such products of two-particle 

clusters in which the clusters are either both in the isocolor-singlet 

state with amplitude case or are both intheisocolor-triplet state with 

amplitude sin0 (in either case the overall four-quark systeo is in a 

singlet state) is 

5. We are indebted to J. Sucher for suggesting this approach. 



-21- 

F1 = 2 -3’2,,:;‘~;;’ + F;;‘G;;’ - F;;‘G;;’ - F;;‘G;;‘]costl 

(3) (3) 
+ F24 G13 

_ F(3)G(3) 
14 24 - F23 G14 

(3) (3)]sine - (39a) 

+ 2-3/Z 3-1'2[2~;;)G:;) + ZF$‘G:;’ + F;;‘G;;’ t 

F2 = 2 -3/Z 3-1/212F(1)c(1) (1) (1) (1) (1) (1) (1) 
12 34 + 2F34 G12 - F13 '24 - '24 ‘13 - 

_ F(l)G(l) (1) (1) 
14 23 

- Fz3 G14 ]cost? 

_ 2-3/2LF(3)G(3) + F(3)G(3) + F(3)G(3) + F(3)G(3)Isinc 
13 24 24 13 14 23 23 14 , (395) 

where one cluster is represented by the function F and the other cluster 

separated by a distance a is represented by the function G and where 

F(_x,-L,) is abbreviated by F12, etc., and, finally, F (1) or G(l) stands 

for a ii&et state and FC3) or Gt3) stands for a triplet state. The 

Pauli principle requires that the singlet functions are symetric and 

the triplet functions are antisqmnetric under interchange of their 

arguments. We ta!:e the singlet functions to be ground-state eigenfunctions 

of the two-body singlet potential, (33) and the triplet functions to be 

the first antislarnetric excited eigenfunction of the same equation. We 

can then use (33) to elininate the kinetic energy in favor of the 

appropriate two-body potential and the energy eigenvalue. h'hen the 

clusters are well separated, exchange terms are exponentially small. 

and we drop them. In addition, as stated above, we have dropped 

the center of mass energy of each cluster. The expectation value 

of the Haniltonian in this variational wavefunction is 

<H> = E(a) - I d 3 3 
r12 d r3,, [A cos’@+BsinB ~0se+csin2el , (40) 



where 

A = 2co(F~;)G;~))2 , (41a) 

6 = 3-l/2,(" (3) (3) (1) (1) * 
13 24-v14-v23)F12 G34 '12 G34 ' +v (41b) 

and 

c- t2~l-(2k/3)(V12+V34)+(k/3)(Vl3+V23+V14+V24)~(F~~)G~~))2 . (41c) 

Using the normalization properties of the two-body states, introducing the 

color-polarization dipole matrix elements,and keeping terms relevant for 

O<a<5, we can write the energy as a function of separation. 

E(a) = Acos'6 + BsinScosG + Csin'8 , (42) 

where 

A= 2~~. where co is the ground state "baryon" energy. (433) 

B = -3 -l/2 klp (43b) 

C = (4k/3)aa , (43c) 

p _ z~31)>.<~31).+(o-2)(8.,;31)~)(+r~31).)la"-2 . (43d) 

and 

<r (31), p I I* r F(')(r)d3r, etc. 
*F ev - (43e) 

An alternative form for the energy is 

E(a) = +,C) + +(A C)2+B2]1'2 Sin(28+$) I (44=) 
2 2 - 

where 

(A C)[(A-C)2+B2]-1'2 sin@ = - . (44b) 



The minimm of the energy is 

E ain = +(A+C) - +[(A-C)~+E?]“~ , 

where the angle at the minimum is 

e = -- min ; (c+f) . 

Our final results are that the minimum energy is6 

Enin = 2c0 - (l/16) ka2 p2 aa-4 

(45a) 

(45b) 

(46a) 

and the mixing angle is 

‘min 
: - (,94)LP . (i63) 

Since the variational calculation gives an upper bound to the energy, 

ve are assured that the van der Waals teru decreases no faster than a a-4 . 

For the most likely case of the linear potential (aal), Feinberg and Sucher 111 

find the constraint 

b-&7 (=I 1 - X3 (ao/aj3 200 MeP, h3 s 10-l’ , (47) 

a 
0 

= lfm, from data on Cavendish-type experiments. Comparison with the 

result of (46a), 

U vdi: (a) z -(l/16) k p2a-3 t (46) 

6. For corplereness, we note that for u > 2 the nininum value of p is 

pmin = (l-n)c;F>‘~~C>’ which occurs when the color-dipole transition 

moments are colltilaar with the separation between the clusters and have 

opposite direction, and that for o. < 2 p 
min - - <J~>‘<J~>, which occurs 

when the transition moments also have opposite direction, but are 

orthogonal to the separation between the clusters. 
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for D - 1. using the estinate p .-L 1 fm2. gives 

k < 1.6 x lo-11 fm-2 ; (49a) 

to be compared with 

k = 5 fm-' (49b) 

found fror. charmniur? data by Eichten ( ftt. 1311. Thus the van der h'aals 

interaction which follows fro= a linear confining interaction in the 

p:,tex:ial moZe1 is very strongly ruled Out [1,14,161 The potential model 

does not include retardation effects. Inclusion of retardation seezs 

likely to change the van der \!aals interaction fror. a a-4 
to a q11. . 

For the linear potential this changes a 
-3 -4 

to a , for which the bounds of (11 

are weaker, but srill significant. Using the estimate 

c ret 
Vdl: - -(1/16)k p5'2 a-4 

for a=1 with retardation, and, again, taking p ?r 1 fn2, the bound 

ICvd$=) ! 

(50) 

(51) 

(52) 

whkh is still tw orders of magnitude smaller than (49b). Thus. even with 

retardation, the additive two-body potential model for the confinement of 

7. h'e cooent briefly on simplifying assumptions made in this calculation. 

The use of non-relativistic kinanatics Is not lzqmrtant. since confine- 

ment is a low-energy or lonS-distance phenomenon in which relativisitc 

corrections should not be tiportant. The use of SU(2)color instead of 

SU(3) color should not be qualitatively significant. 
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qiarks leads to van der Waals interactions which are in strong contradiction 

with experiment, and this model cannot be used to derive the nucleon-nucleon 

interaction. 
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